Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597601

RESUMO

Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens of nanometers, which is not suitable for the implementation of devices at large lateral scales. Here we report the growth of Td -WTe2 ultrathin films by MBE on monolayer (ML) graphene, reaching a mean flake size of ≃110 nm, which is, on overage, more than three times larger than previous results. WTe2 films thicker than 5 nm have been successfully synthesized and exhibit the expected Td phase atomic structure. We rationalize the epitaxial growth of Td-WTe2 and propose a simple model to estimate the mean flake size as a function of growth parameters that can be applied to other transition metal dichalcogenides (TMDCs). Based on nucleation theory and the Kolmogorov-Johnson-Meh-Avrami (KJMA) equation, our analytical model supports experimental data showing a critical coverage of 0.13 ML above which WTe2 nucleation becomes negligible. The quality of monolayer WTe2 films is demonstrated by electronic band structure analysis using angle-resolved photoemission spectroscopy (ARPES), which is in agreement with first-principles calculations performed on free-standing WTe2 and previous reports. We found electron pockets at the Fermi level, indicating a n-type doping of WTe2 with an electron density of n = 2.0 ± 0.5 × 1012 cm-2 for each electron pocket.

2.
Nano Lett ; 24(1): 82-88, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109843

RESUMO

The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.

3.
ACS Nano ; 17(21): 21307-21316, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37856436

RESUMO

The growth of bilayers of two-dimensional (2D) materials on conventional 3D semiconductors results in 2D/3D hybrid heterostructures, which can provide additional advantages over more established 3D semiconductors while retaining some specificities of 2D materials. Understanding and exploiting these phenomena hinge on knowing the electronic properties and the hybridization of these structures. Here, we demonstrate that a rhombohedral-stacked bilayer (AB stacking) can be obtained by molecular beam epitaxy growth of tungsten diselenide (WSe2) on a gallium phosphide (GaP) substrate. We confirm the presence of 3R-stacking of the WSe2 bilayer structure using scanning transmission electron microscopy (STEM) and micro-Raman spectroscopy. Also, we report high-resolution angle-resolved photoemission spectroscopy (ARPES) on our rhombohedral-stacked WSe2 bilayer grown on a GaP(111)B substrate. Our ARPES measurements confirm the expected valence band structure of WSe2 with the band maximum located at the Γ point of the Brillouin zone. The epitaxial growth of WSe2/GaP(111)B helps to understand the fundamental properties of these 2D/3D heterostructures, toward their implementation in future devices.

4.
ACS Nano ; 17(19): 18924-18931, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37585336

RESUMO

Two-dimensional (2D) ferroelectric (FE) materials are promising compounds for next-generation nonvolatile memories due to their low energy consumption and high endurance. Among them, α-In2Se3 has drawn particular attention due to its in- and out-of-plane ferroelectricity, whose robustness has been demonstrated down to the monolayer limit. This is a relatively uncommon behavior since most bulk FE materials lose their ferroelectric character at the 2D limit due to the depolarization field. Using angle resolved photoemission spectroscopy (ARPES), we unveil another unusual 2D phenomenon appearing in 2H α-In2Se3 single crystals, the occurrence of a highly metallic two-dimensional electron gas (2DEG) at the surface of vacuum-cleaved crystals. This 2DEG exhibits two confined states, which correspond to an electron density of approximately 1013 electrons/cm2, also confirmed by thermoelectric measurements. Combination of ARPES and density functional theory (DFT) calculations reveals a direct band gap of energy equal to 1.3 ± 0.1 eV, with the bottom of the conduction band localized at the center of the Brillouin zone, just below the Fermi level. Such strong n-type doping further supports the quantum confinement of electrons and the formation of the 2DEG.

5.
Nat Commun ; 13(1): 6396, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302853

RESUMO

Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, α-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization. Currently based on the application of an electric field, the writing and reading processes could be outperformed by the use of femtosecond light pulses requiring exploration of the possible control of ferroelectricity on this timescale. Here, we probe the room temperature transient dynamics of the electronic band structure of α-GeTe(111) using time and angle-resolved photoemission spectroscopy. Our experiments reveal an ultrafast modulation of the Rashba coupling mediated on the fs timescale by a surface photovoltage, namely an increase corresponding to a 13% enhancement of the lattice distortion. This opens the route for the control of the ferroelectric polarization in α-GeTe(111) and ferroelectric semiconducting materials in quantum heterostructures.

6.
Nat Commun ; 13(1): 228, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017477

RESUMO

Electron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order. A broad spectral phonon line shape is often interpreted as a marker of strong electron-phonon coupling associated with Fermi surface nesting, i.e., parallel sections of the Fermi surface connected by the phonon momentum. Alternatively broad phonons are known to arise from strong atomic lattice anharmonicity. Here, we show that strong phonon broadening can occur in the absence of both Fermi surface nesting and lattice anharmonicity, if electron-phonon coupling is strongly enhanced for specific values of electron-momentum, k. We use inelastic neutron scattering, soft x-ray angle-resolved photoemission spectroscopy measurements and ab-initio lattice dynamical and electronic band structure calculations to demonstrate this scenario in the highly anisotropic tetragonal electron-phonon superconductor YNi2B2C. This new scenario likely applies to a wide range of compounds.

7.
ACS Nano ; 13(4): 4720-4730, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30916924

RESUMO

Silicon oxide can be formed in a crystalline form, when prepared on a metallic substrate. It is a candidate support catalyst and possibly the ultimately thin version of a dielectric host material for two-dimensional materials and heterostructures. We determine the atomic structure and chemical bonding of the ultimately thin version of the oxide, epitaxially grown on Ru(0001). In particular, we establish the existence of two sublattices defined by metal-oxygen-silicon bridges involving inequivalent substrate sites. We further discover four electronic bands below the Fermi level, at high binding energy, two of them having a linear dispersion at their crossing K point (Dirac cones) and two others forming semiflat bands. While the latter two correspond to hybridized states between the oxide and the metal, the former relate to the topmost silicon-oxygen plane, which is not directly coupled to the substrate. Our analysis is based on high-resolution X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and density functional theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...